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Abstract

The CATS dataset introduced a new set of diverse indoor

and outdoor scenes with ground truth disparity information

for testing stereo matching algorithms in color and thermal

imagery. These scenes included nighttime, foggy, low light,

and complex lighting in scenes. To extend the usefulness of

the CATS dataset we add pixel- and instance-level seman-

tic labels. This includes labels for both color and thermal

imagery, and the labels also apply to 3D point clouds as a

result of the existing 2D-3D alignment. We compare the new

CATS 2.0 dataset against other similar datasets and show it

is similar in scope to the KITTI-360 and WildDash datasets,

but with the addition of both thermal and 3D information.

Additionally, we run a benchmark pedestrian detection al-

gorithm on a set of scenes containing pedestrians.

1. Introduction

The CATS dataset [14] is a stereo matching dataset that

includes stereo color, stereo thermal, and ground truth dis-

parity via a LIDAR. CATS includes tabletop, indoor, and

outdoor scenes captured in a variety of conditions including

low light, twilight, nighttime, light fog, and heavy fog. The

addition of the stereo thermal cameras when compared to

typical stereo datasets can allow algorithms to work in con-

ditions when a regular camera would fail. Even in normal

daytime conditions, some objects can be hidden in shadow

which only the thermal camera can see.

Despite having hundreds of objects, the original CATS

dataset does not provide object labels. These labels are es-

sential for common computer vision tasks such as recogni-

tion, detection, and segmentation. Thus, the CATS dataset

is limited in its applicability. In this work, we extend the

CATS dataset to include instance- and pixel-level semantic

label segmentation in both color and thermal modalities.

Our contributions are as follows:

1. Manually labeled at a pixel and instance level, which

includes both color and thermal images.

2. Organized and provided all (image, pixel) locations for

Figure 1. Example indoor and outdoor scenes with pixel- and

instance-level semantic labels. Top-left: Color image of a table-

top scene of books. Bottom-left: False color thermal image of an

outdoor scene of a car with people inside. Right: Corresponding

pixel-level instance labels.

each class and each instance. At each pixel location,

available information includes color, thermal, depth,

and semantic labels.

3. Evaluated a state-of-the-art multispectral pedestrian

detector on a subset of CATS 2.0

2. The Color and Thermal Stereo Dataset 2.0

In this section we will briefly summarize what was in-

cluded in the original dataset and then detail the additions

that were made for CATS 2.0. For a more detailed view of

the original dataset, see [14].

2.1. CATS 1.0 Summary

The CATS imaging setup consists of 4 cameras – two

visible-band (color), two long wave infrared (thermal) –

and a LiDAR. Specifically, this consists of two Point Grey
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WildDash [16] 1800 Outdoor Pxl Inst *** 28 C No Yes Yes ’18

CityScape [3] 3,475** Outdoor Pxl Inst 78651 30 C No No No ’16

BDD [15] 100,000 Outdoor Pxl Inst 1,841,435 10 C No Yes Yes ’18

KAIST [10] 95,000 Outdoor Box Inst 103,128 3 C + T No Yes No ’15

FLIR ADAS [1] 9,214 Outdoor Box Inst 37,723 5 C + T † No Yes No ’18

KITTI-360 [2] 400 Outdoor Pxl Inst 4147 31 C Yes* No No ’18

CATS 2.0 (Ours) 686 In+Outdoor Pxl Inst 3400 9/96 ‡ C + T Yes Yes Yes ’19

Table 1. Comparison of several object label datasets.
*The main KITTI dataset does provide 3D information via disparity, but KITTI-360 which contains the semantic labels does not directly have this

information when downloaded. **The number of images in the ”fine annotations” data. ***Unlisted † Unaligned, but synchronized pair. ‡ There are 9

coarse classes and 96 fine classes.

Table 2. Dataset information for labeled images

Attribute # of Imgs

None 336

Dark 159

Low Light 159

Light Fog 16

Heavy Fog 16

Flea2 cameras capturing at 1280 x 960 resolution, two Xen-

ics Gobi-640-GigEs long wave infrared cameras capturing

at 640 x 480 resolution at 50 mK thermal sensitivity, and a

Trimble GX Advanced TLS LiDAR.

The dataset is split into two main groups: indoor and out-

door scenes, with the indoor scenery comprised primarily of

tabletop and room scenes. There are 10 indoor scenes that

rougly correspond to 10 different categories: electronics,

plants, books, statues, toys, tools, materials, spooky decora-

tions, miscellaneous objects, and objects in a storage room.

Each scene was captured with the following lighting con-

ditions: low light, dark, and normal lighting. Some scenes

include fog to simulate fire and suspended particulate con-

ditions with people hidden under collapsing objects.

The outdoor scenery comprises of scenes from the fol-

lowing locations: a backyard, a courtyard, a parking garage,

a forest, a garden, a house, a tool shed, and a university

campus building. Scenes were captured either during the

day, during twilight, or at nighttime. For the very visibly

dark scenes, the thermal images – due to the invariance of

thermal imagery to visible light differences – are essentially

unchanged, while some or most objects become impossible

to see in the color imagery.

2.2. CATS 2.0 Additions

CATS 2.0 contains the same imagery and 3D point

clouds as CATS 1.0, but with the addition of pixel-level in-

stance and semantic labels, such as those seen in Figure 1.

The labels were manually generated by the authors. The

following labeling policies were used:

• Foreground objects are to be each labeled separately,

with each given a unique identifier. Objects are finely

annotated as precisely as possible.

• Background objects are to be labeled separately if pos-

sible, such as individual windows, trees, or buildings.

• Uniform background objects such as grass or very

complex objects such as foliage were given a single

label. For example, individual leaves on a tree and

blades of grass are not given separate label identifiers.

Additionally, the complex objects are labeled more

coarsely.

• When finished, the labeled image is cross-checked be-

tween both the color and thermal images to verify ob-

jects that are hard to see in one modaility of image are

not missed in the other.

There are a total of 686 labeled images. The dataset in-

cludes 3400 labels across 9 coarse/96 fine classes, as well

as the corresponding 3D points.

2.3. Dataset Comparison

Table 1 gives a summary comparison between recent

datasets involving semantic labeling. This is not an exhaus-

tive list, but tries to list the most recent and largest datasets

in order to give ours some context.

Due to the rise of self-driving application, more and

more cityscape datasets have been released containing

labels for mostly cars, pedestrians, and signage. The

”Cityscapes Dataset” released in 2016 [3, 4] is a recent ad-

dition with high quality, good weather/lighting condition

videos and pixel-level instance labels across 50 cities. The

Oakland 3D dataset [8] contains labeled point clouds of ur-

ban environments. The KITTI-ROAD dataset [5] is subset
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Figure 2. Example environmental conditions in the CATS 2.0 Dataset including outdoor, inside, and tabletop scenes. These include

nighttime, low light, complex lighting, and foggy conditions, as well as hidden objects only visible in one modality.

of the KITTI dataset [7, 6] containing 600 frames with the

road and the ego-lane annotated. Additionally, the KITTI

dataset [2] contains semantic labels for 400 images con-

forming to the Cityscape dataset format.

Recently there has been a push for varied lightning and

environmental conditions in datasets. The WildDash bench-

mark [16] is a recent dataset containing outdoor road scenes

with realistic conditions, including fog and rain. The Berke-

ley Deep Drive (BDD) dataset [15] contains 100,000 HD

videos with both bounding boxes and fully pixel-labeled

images in diverse driving conditions. This dataset is the

currently largest and most diverse color-camera dataset for

self-driving car applications.

Additionally, there are a wide variety of datasets that

contain semantic labels in more general scenes. The COCO

dataset [12] is one of the largest and well-known pixel-level

semantically labeled dataset for general scenes, both indoor

and outdoor, with 80 object categories. The Semantic3D

dataset [9] which contains 3D labels over a diverse set of

outdoor scenes. The ISPRS dataset [13] gives semantic la-
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Figure 3. Example detections using the MSDS pedestrian detector.

Green is ground truth, red is from the MSDS detector.

bels from satelite views.

Also recently, thermal datasets have become more com-

mon. The FLIR ADAS dataset [1] contains 10,000 bound-

ing box labels of pedestrians and cars in thermal cityscape

scenes, with unaligned reference RGB imagery additionally

given. The KAIST Multispectral pedestrian dataset [10]

contains aligned and dually annotated color-thermal pairs

of pedestrians with bounding boxes.

However, to the best of our knowledge, there does not ex-

ist a dataset that contains semantic labels with thermal im-

agery, nor one that combines color, thermal, depth, and se-

mantic labels until CATS 2.0. Due to the amount of classes

and data, our dataset is useful for testing algorithms but

larger datasets such as BDD can be used for training.

3. Baseline Experiment

In this section we provide a baseline experiment that uti-

lizes CATS 2.0 object labels to evaluate the MSDS multi-

spectral pedestrian network outlined in [11]. The MSDS

architecture is composed of a fusion of a multispectral pro-

posal network to generate pedestrian proposals, and a multi-

spectral classification network to help distinguish those pro-

posals. The network is trained by optimizing both pedes-

trian detection and semantic segmentation jointly and, at

the time of publication, was the top-performing method on

the KAIST multispectral pedestrian dataset [10]. This work

also outlined some inaccuracies in the annotations in the

KAIST dataset, while providing a sanitized version.

We used pre-trained weights from the MSDS project

page 1 which were learned by training the network on the

sanitized KAIST dataset and ran the network on a set of

pixel-aligned pairs of color and thermal images from CATS.

Due to CATS images having a higher resolution, im-

ages were resized to (640, 512) to match the resolution of

KAIST thermal imagery. Because pedestrians generally ap-

pear larger in CATS images, we also used three additional

scales to simulate different pedestrian sizes with images re-

sized to 1

2
, 1

3
, and 1

4
, or image sizes of (320, 256), (213,

170), and (160, 128), respectively.

Each color and thermal image pair was then run through

the network to detect pedestrians and generate bounding

boxes with a confidence threshold set to 0.35 and a non-

maximum suppression threshold set to 0.3. The generated

pedestrian bounding boxes from MSDS were then com-

pared to the manually annotated CATS 2.0 bounding boxes

using intersection over union (IoU). Out of 100 images con-

taining pedestrians (25 images at 4 scales), the MSDS net-

work was able to detect pedestrians in 29 with the aver-

age IoU score for the detections being 0.428. We present

some of the better detection results in Fig 3, where the green

boxes indicate CATS 2.0 ground truth labels and red boxes

are the MSDS pedestrian detections. Qualitative analysis

of the results indicates that pedestrians closer to the camera

and pedestrians in very dark scenes were not detected by the

network.

4. Conclusion

In this work we have introduced pixel-level instance-

level semantic labels to the CATS dataset. We labeled 686

images including both color and thermal images across a va-

riety of indoor and outdoor scenes containing varied light-

ing and environmental conditions. We compared the new

CATS 2.0 semantically labeled dataset against other sim-

ilar datasets and found there has been a push for large-

scale, diverse lighting, and environmental conditions, but

the scope of current multispectral datasets is limited. We

benchmarked a pedestrian detector and found that there is

still room for improvement for multispectral detection. In

the future, we will build on this dataset by applying the

same methodology on a larger scale across seasons.

1https://github.com/Li-Chengyang/MSDS-RCNN
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